

TEAM stage: opportunities for in-situ microscopy

Ivan Petrov
Todor Donchev
Eric Olson

CMM Frederick Seitz MRL, UIUC Andreas Schmid Thomas Duden Nord Andresen

NCEM, Lawrence Berkeley National Lab

Advantages of the TEAM stage

Modular design with four moving parts

5-axis piezo stage

alpha module

beta module

Two axis, interchangeable "beta module" provides x-motion, γ-tilt (rotation)

the alpha stage in action

Modular design maximizes flexibility

Beta module designs

Compustage ~0.3 kHz

Attoboy 1.8 kHz 1.2 mm grid

Lily 1.2 kHz 2.3 mm grid

Rhonda 1.2 kHz 3 mm grid

Attoboy beta module

- highest stability
- high tilt angles: tomography in TEAM 0.5 within 2 mm
- Small sample size (<1 mm)
 - experimentation difficult

Biasing stage requirements

- retain high stability, piezoelectric stack motors
- in-situ, capacitive encoders
- larger sample size -- 3 mm grids
- prioritize in-situ biasing for experimentation

In-situ modules - single-tilt

Nanomanipulator

Liquid Cell

Liquid cell

- Liquid is sealed between two SiN_x membranes.
- O-rings seals the grids.
 No glue needed.
- Rotating cap for quick assembly.
 - takes less than 5 min to assemble!
- Gap between two membranes can be controlled down to 200nm.

carbon canotubes in water

Wen, Marsh, 2008

8-pin MEMS holder

Holder

MEMS device outline

The goal was to create a standardized platform for which anyone can design a device.

USPTO Application 20060025002 (2005).

Standardized MEMS Various users

Nanocalorimeter

J Mater. Res. 20, 1802 (2005).

Transistor biasing

Kim, Olson, et al. APL. 87 173108 (2005).

Tensile testing

Yong, Moldovan, and Espinosa. APL. **86** 013506 (2005).

Biasing stage requirements

- retain high stability, piezoelectric stack motors
- in-situ, capacitive encoders
- larger sample size -- 3 mm grids
- prioritize in-situ biasing for experimentation

Prototype/testing biasing stage

Electronics incorporated into the holder

LED off

LED on

I2C-to-serial interface board,

inside the handle

analog-to-digital board, in vacuum!

x, γ motion plus electrical contact

Biasing stage

J. Petrov

Sample holder

Should be:

- insulating (prevents shorting of device)
- conductive (prevents charging in microscope)
- able to take a standard 3 mm grid

In-situ heating, two devices:

- Designed at FS-MRL
 - Based around off-the-shelf Si₃N₄ grids
 - Patterned metal heater strip
- Protochips design
 - Ceramic membrane
 - Coming soon to a microscopy supplier near you

Microfabricated heater #1

- Made using commercial Si₃N₄ grids
- 30-50 nm membrane thickness
- Maximum temperature: ~ 350°C
- Standard 3 mm form factor

Heating

Heating causes rearrangement of a Bi metal film

room temp.

~300°C

Microfabricated heater #2

- Made by Protochips
- Maximum temperature: ~1200°C
- ~3 mm in size
- requires a few mA to operate

1. Petrov

Protochips Aduro Technology

Aduro technology places MEMS-based microheaters directly within the TEM.

Current forced through a thin membrane provides rapid Joule heating.

Heater calibration

Each microheating device is characterized under vacuum using a Mikron M9104 Ultra High Resolution Imaging Pyrometer with microscope optics

optical

thermal

In-situ heating

- Start with colloidal Au nanoparticles ~10 nm in size
- Particles on a carbon film on a Protochips device
- Heat and observe

In-situ heating, Au melting

In-situ TEAM stage

- 2-contact sample
- interchangeable
- capacitive encoders

In-situ TEAM stage

J. Petrov

Optimization of the rods/cartridge assembly

$$f_{est} \approx 1000 \text{ Hz}$$

 $f_{est} > 1500 Hz$

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{3EI}{(0.22M_{\text{beam}} + M_{\text{weight}})L^3}}$$

different designs may affect

- automatic loading
- resonance frequency

TEAM stage: opportunities for in-situ microscopy

fine motion in-situ biasing/temp.

Biasing TEAM stage

single tilt
lots of in-situ capabilities

platform for user to develop their experiments proof of principle in conventional TEMs

Thank you

Optimization of the rods/cartridge assembly

 $f_{est} > 1500 Hz$

different designs may affect

- automatic loading
- resonance frequency

Ballpark-estimate of best possible resonance

- a) Reaching ~ 2000 Hz should be feasible within reasonable geometric constraints of several centimeter linear dimensions
- b) Aiming above 2000 Hz would be unreasonable -- ~ 2000 Hz is also the resonance of a typical TEM objective, i.e. relative motion of upper- vs lower polepiece would simply dominate a hypothetical, even stiffer stage

In-situ microscopy

lab in the microscope

Long-term TEAM goal is to enable in-situ experiments.

Currently have five holders for use in CMM microscopes:

- MEMS
- Wet-cell
- Tensile holder
- 4. Nanomanipulator
- 5. Biasing

J. Petrov

In-situ heating and melting

Nanocalorimetry

Sensor

Slow heating

Bi nanoparticles heating rate 30,000 K/sec

50 nm

Zhang, Olson, et al., J Mater. Res. **20**, 1802 (2005).